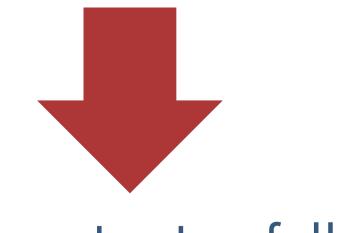

INTEREST

UHAT IS INTEREST?

WHAT AFFECTS INTEREST?

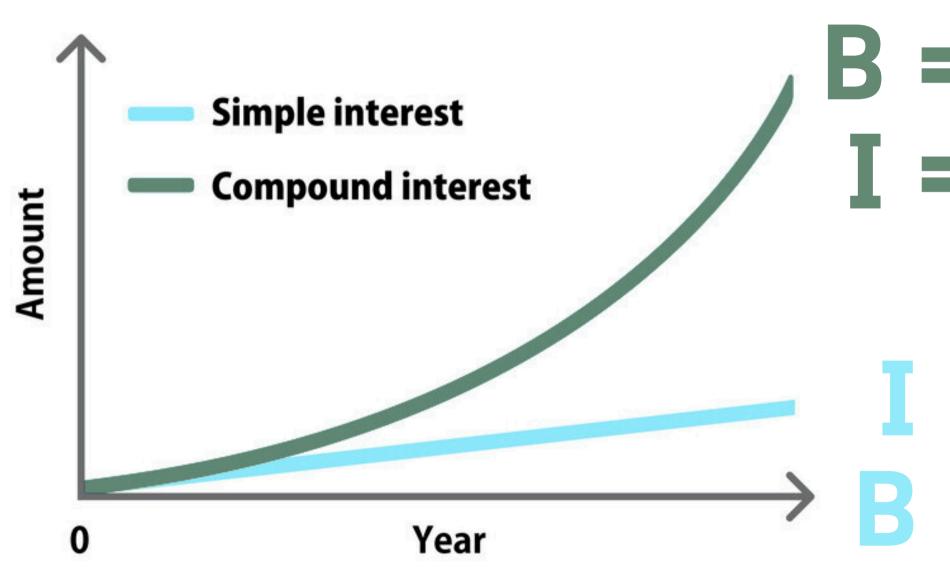


Interest rates fall

Demand

SIMPLE INTEREST

Based on principal amount of a loan (interest is the same every time)


I = Prt

 \mathbf{B} = balance **I** = interest **P** = principal **r** = annual interest rate (as a decimal) **t** = time (in years)

COMPOUND INTEREST

Based on principal plus previous interest (interest increases every time)

$B = P(1 + r)^{T}$

$B = P(1 + r)^{t}$ I = B - P

-I = Prt -B = I + P

COMPOUND INTEREST

Interest can <u>accrue</u> daily, monthly, or quarterly. Compound interest is the smarter investment!

Ex. principal of \$50 with 10% interest

	Simple	
Year 1	\$50 + \$5 = \$55	\$
Year 2	\$55 + \$5 = \$60	\$55
Year 3	\$60 + \$5 = \$65	\$60.50

- Compound
- 50 + **\$5** = \$55
- + **\$5.50** = \$60.50
- 0 + **\$6.05** = \$66.55

simple interest = ? P = \$100 r = 20% t = 5 years

How much will the balance be?

simple interest = ? **P** = \$100 **r** = 20% **t** = 5 years

How much will the balance be?

- I = Prt
 - = (\$100)(0.20)(5)
 - = \$100
- $\mathsf{B} = \mathsf{P} + \mathsf{I}$
 - = \$100 + \$100
 - = \$200
- . I will have \$200 after 5 years.

B (compounded annually) = ? **P** = \$100

- **r** = 20%
- **t** = 5 years

How much will the balance be?

B (compounded annually) = ?

P = \$100 **r** = 20% **t** = 5 years

How much will the balance be?

 $B = P(1 + r)^{t}$ $= (\$100)(1 + 0.20)^5$ = \$248.83

∴ I will have \$248.83 after 5 years.

compound interest =? **P** = \$100 **r** = 20% **t** = 5 years

How much will the interest be?

compound interest =? **P** = \$100 **r** = 20% **t** = 5 years

How much will the interest be?

- I = B P= \$248.83 - \$100 = \$148.83
- . The interest will be \$148.83 after 5 years.

Carlos has \$17 in a savings account. The interest rate is 15% per year and is not compounded. How much will he have in 4 years?

Carlos has \$17 in a savings account. The interest rate is 15% per year and is not compounded. How much will he have in 4 years?

- I = Prt
 - = (\$17)(0.15)(4)
 - = \$10.20
- B = P + I = \$17 + \$10.20 = \$27.20
- ∴ He will have \$27.20 in 4 years.

Owen has \$13 in a savings account. The interest rate is 10% per year and is not compounded. How much will he have in 2 years?

Owen has \$13 in a savings account. The interest rate is 10% per year and is not compounded. How much will he have in 2 years?

- I = Prt
 - = (\$13)(0.10)(2)
 - = \$2.60
- B = P + I= \$13 + \$2.60
 - = \$15.60
- ∴ He will have \$15.60 in 2 years.

Angela has \$10 in a savings account that earns 15% interest, compounded annually. How much will she have in 2 years?

Angela has \$10 in a savings account that earns 15% interest, compounded annually. How much will she have in 2 years?

$$B = P(1 + r)^{t}$$

= (\$10)(1 + 0.15)²
= \$13.23

\therefore She will have \$23.23 in 2 years.

Maki deposited \$25 in a savings account earning 20% interest, compounded annually. How much will she have in 2 years?

Maki deposited \$25 in a savings account earning 20% interest, compounded annually. How much will she have in 2 years?

 $B = P(1 + r)^{t}$ $= ($25)(1 + 0.20)^2$ = \$36

 \therefore She will have \$36.00 in 2 years.